Strong Convergence Theorem for Bregman Strongly Nonexpansive Mappings and Equilibrium Problems in Reflexive Banach Spaces
نویسندگان
چکیده
منابع مشابه
Strong Convergence Theorem for Bregman Strongly Nonexpansive Mappings and Equilibrium Problems in Reflexive Banach Spaces
We denote by F(T) the set of fixed points of T. Numerous problems in physics, optimization, and economics reduce to find a solution of the equilibrium problem. Some methods have been proposed to solve the equilibrium problem in a Hilbert spaces; see, for instance, Blum and Oettli [1], Combettes and Hirstoaga [2], and Moudafi [3]. Recently, Tada and Takahashi [4, 5] and S. Takahashi and W. Takah...
متن کاملStrong Convergence Theorems for Bregman Quasi–asymptotically Nonexpansive Mappings and Equilibrium Problem in Reflexive Banach Spaces
The purpose of this article is to propose an iteration algorithm for Bergman quasiasymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems. The results presented in the paper improve and extend the corresponding results of Reich and Sabach...
متن کاملStrong convergence theorems for equilibrium problems and weak Bregman relatively nonexpansive mappings in Banach spaces
In this paper, a shrinking projection algorithm based on the prediction correction method for equilibrium problems and weak Bregman relatively nonexpansive mappings is introduced and investigated in Banach spaces, and then the strong convergence of the sequence generated by the proposed algorithm is derived under some suitable assumptions. These results are new and develop some recent results i...
متن کاملA Strong Convergence Theorem for Relatively Nonexpansive Mappings and Equilibrium Problems in Banach Spaces
and Applied Analysis 3 xn ⇀ x ∈ X and ‖xn‖ → ‖x‖, then xn → x. It is known that if X is uniformly convex, then X has the Kadec-Klee property. The normalized duality mapping J from X to X∗ is defined by Jx { x∗ ∈ X∗ : 〈x, x∗〉 ‖x‖ ‖x∗‖2 } 2.3 for any x ∈ X. We list some properties of mapping J as follows. i If X is a smooth Banach space with Gâteaux differential norm , then J is singlevalued and ...
متن کاملStrong convergence theorems for equilibrium problems and quasi-φ-asymptotically nonexpansive mappings in Banach spaces
In this paper, we introduce two modified Mann-type iterative algorithms for finding a common element of the set of common fixed points of a family of quasi-φ-asymptotically nonexpansive mappings and the set of solutions of an equilibrium problem in Banach spaces. Then we study the strong convergence of the algorithms. Our results improve and extend the corresponding results announced by many ot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2013
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2013/962691